Part Number Hot Search : 
1051QA3 25002 U1000 100EP 10S24 BZG03C51 LTC17 B20200G
Product Description
Full Text Search
 

To Download R1225N122J-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 12345
I OUTLINE
2002. Nov. 5
PWM/VFM step-down DC/DC Converter
R1225N Series
The R1225N Series are CMOS-based PWM step-down DC/DC Converter controllers with low supply current. Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, a latch-type protection circuit, a PWM/VFM alternative circuit, a chip enable circuit, a phase compensation circuit, and an input voltage detect circuit. Further, protection circuit delay time adjuster circuit, and resistors for voltage detection are included. A low ripple, high efficiency stepdown DC/DC converter can be easily composed of this IC with some external components, or a powertransistor, an inductor, a diode and capacitors. With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching into the VFM oscillator from PWM oscillator, therefore the efficiency at small load current is improved. The R1225NXXXC/D/K types, which are without a PWM/VFM alternative circuit, are also available. If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. It is latch-type protection circuit, and it works to latch an external Power MOSFET with keeping it off. To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. Delay Time for protection circuit is adjustable with an external capacitor. With a built-in UVLO function, when the input voltage is UVLO threshold or less, this IC keeps standby state, and saves its consumption current and avoids miss-operation. Further, if the set output voltage is equal or more than 2.1V, with a built-in start-up function, at the power-on moment until the input voltage becomes more than the set output voltage, DC/DC operation is halted and avoids miss-operation.
I FEATURES
G Wide Range of Input Voltage * * * * * * * * * * * * *2.3V18.5V G Built-in Soft-start Function and Latch-type Protection Function G Three options of Oscillator Frequency * * * * * *180kHz, 300kHz, 500kHz G High Efficiency * * * * * * * * * * * * * * * * * *Typ. 90% G Output Voltage * * * * * * * * *Stepwise Setting with a step of 0.1V in the range of 1.2V 6.0V G Standby Current * * * * * * * * * * * * * * * * *Typ. 0.0A G High Accuracy Output Voltage * * * * * * * * * *2.0% G Low Temperature-Drift Coefficient of Output Voltage * * * * * Typ. 100ppm/C
I APPLICATIONS
G Power source for hand-held communication equipment, cameras, video instruments such as VCRs, camcorders. G Power source for battery-powered equipment. G Power source for household electrical appliances.
12345
Rev. 1.11 -1-
I BLOCK DIAGRAM
VIN
OSC
Start func
VOUT
Amp
Vref
Soft Start
EXT
PWM/VFM CONTROL Protection
Chip Enable
CE
UVLO
Vref
DLY
GND I SELECTION GUIDE
In the R1225N Series, the output voltage, the oscillator frequency, the optional function, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;
R1225NXX2X-TR
a bc d
Code a b c Contents Setting Output Voltage(VOUT): Stepwise setting with a step of 0.1V in the range of 1.2V to 6.0V is possible. Designation of Oscillator Frequency 2 : fixed Designation of Optional Function A : 300kHz, with a PWM/VFM alternative circuit B : 500 kHz, with a PWM/VFM alternative circuit C : 300kHz, without a PWM/VFM alternative circuit D : 500kHz, without a PWM/VFM alternative circuit J : 180kHz, with a PWM/VFM alternative circuit K : 180 kHz, without a PWM/VFM alternative circuit Designation of Taping Type: Refer to Taping specification. "TR" is prescribed as a standard.
d
12345
Rev. 1.11 -2-
I PIN CONFIGURATION
G SOT-23-6W
6
5
4
VOUT GND CE (mark side) EXT VIN DLY
1
2
3
I PIN DESCRIPTION
Pin No. 1 2 3 4 5 6 Symbol EXT VIN DLY CE GND VOUT Description External Transistor Drive Pin(CMOS Output Type) Power Supply Pin Pin for Setting External Capacitor for Protection Circuit Delay Time Chip Enable Pin (Active "H") Ground Pin Pin for Monitoring Output Voltage
I ABSOLUTE MAXIMUM RATINGS
Symbol VIN VEXT VCE VOUT VDLY IEXT IDLY PD Topt Tstg Item VIN Supply Voltage EXT Pin Output Voltage CE Pin Input Voltage VOUT Pin Input Voltage VDLY Pin Input Voltage EXT Pin Inductor Drive Output Current DLY Pin Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 20 -0.3VIN+0.3 -0.3VIN+0.3 -0.3VIN+0.3 -0.3+1.0 50 15 250 -40+85 -55+125 Unit V V V V V mA mA mW C C
12345
Rev. 1.11 -3-
GR1225Nxx2X (X=A/B/C/D/J/K) Symbol Item VIN Operating Input Voltage VOUT Step-down Output Voltage VOUT/ T fosc
I ELECTRICAL CHARACTERISTICS
Conditions VIN=VCE+VSET+1.5V, IOUT=-100mA When VSET1.5V, VIN=VCE=3.0V -40C Topt 85C VIN=VCE=VSET+1.5V, IOUT=-100mA When VSET1.5V, VIN=VCE=3.0V J/K version A/C version B/D version -40C Topt 85C VIN=VCE=VOUT=18.5V A/B/J/K version C version D version VIN=18.5V, VCE=0V, VOUT=0V VIN=8V,VEXT=7.9V,VOUT=8V,VCE=8V VIN=8V,VEXT=0.1V,VOUT=0V,VCE=8V VIN=2.3V, VCE=0V, VDLY=0.1V VIN=VCE=VOUT=18.5V VIN=VOUT=18.5V, VCE=0V VIN=8V,VOUT=0V VIN=8V,VOUT=0V
Step-down Output Voltage Temperature Coefficient Oscillator Frequency
(Topt=25C) Min. Typ. Max. Unit 2.3 18.5 V VSETx VSET VSETx V 0.98 1.02 ppm 100 /C kHz 144 240 400 180 300 500 0.2 20 30 40 0.0 -17 30 2.0 0.0 0.0 216 360 600 % /C A
fOSC/ T IDD1
Oscillator Frequency Temperature Coefficient Supply Current1
Istb IEXTH IEXTL ISW ICEH ICEL VCEH VCEL Maxdty VFMdty VUVLO1 VUVLO2 Tstart Tprot
Standby Current EXT "H" Output Current EXT "L" Output Current DLY switch current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Oscillator Maximum Duty Cycle VFM Duty Cycle A/B/J version UVLO Voltage VIN=VCE=2.5V to 1.5V, VOUT=0V UVLO Release Voltage VIN=VCE=1.5V to 2.5V, VOUT=0V
Delay Time by Soft-Start function Delay Time for protection circuit
50 60 80 0.5 -10
20 1.0 -0.5 1.5 100 1.8
0.5
0.3 35 2.0 VUVLO1 +0.1 10 20
2.2 2.3 20 35
A mA mA mA A A V V % % V V ms ms
VIN=VSET+1.5V, IOUT=-10mA VCE=0V->VSET+1.5V VIN=VCE=VSET+1.5V VOUT=VSET+1.5V->0V
5 10
12345
Rev. 1.11 -4-
I TYPICAL APPLICATION AND APPLICATION HINTS
L
R1
C1 VIN CE C2 EXT
PM OS
VOUT DLY C4 SD
C3 LOAD
GND
CE CONTROL
PMOS: HAT1044M (Hitachi) L: CR105-270MC (Sumida, 27H) SD1 : RB063L-30 (Rohm) C3: 47F (Tantalum Type) C1 : 10F (Ceramic Capacitor) C2: 0.1F (Ceramic Capacitor) C4: 20nF(Ceramic Capacitor) R1 : 10 When you use these ICs, consider the following issues; G As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do not make its "H" level more than the voltage level of VIN pin. G The operation of Latch-type protection circuit is as follows; When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical Characteristics) the protection circuit works to shutdown Power MOSFET with latching operation. Therefore when an input/output voltage difference is small, the protection circuit may work with small load current. To release the protection of latch status, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. However, in the case of restarting this IC with power-on, after the power supply is turned off, if a certain amount of charge remains in CIN, or some voltage is forced to VIN from CIN, this IC might not be restarted even after power-on. G Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. Make grounding sufficient and reinforce supplying. Large switching current flows through the connection of power line, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC. G Use capacitors with a capacity of 22F or more for VOUT pin, and with good high frequency characteristics such as tantalum capacitors. We recommend to use capacitors with an allowable voltage which is at least twice as much as setting output voltage, in terms of the input capacitors, its voltage rating is twice or more than input voltage. This is because there may be a case where a spike-shaped high voltage is generated by an inductor when an external transistor is on and off. G Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach magnetic saturation. If the value of inductance of an inductor is extremely small, the ILX may exceed the absolute maximum rating at the maximum loading. Use an inductor with appropriate inductance. G Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. G Do not use this IC under the condition with VIN voltage at equal or less than minimum operating
12345
Rev. 1.11 -5-
voltage. G When the threshold level of an external power MOSFET is rather low and the drive-ability of voltage supplier is small, if the output pin is short circuit, input voltage may be equal or less than UVLO detector threshold. In this case, the devise is reset with UVLO function that is not the latch-protection function. G With the PWM/VFM alternative circuit, when the on duty cycle of switching is 35% or less, the R1225N alters from PWM mode to VFM mode (Pulse skip mode). The purpose of this circuit is raising the efficiency with a light load by skipping the frequency and suppressing the consumption current. However, the ratio of output voltage against input voltage is 35% or less, (ex. Vin>8.6V and Vout=3.0V) even if the large current may be loaded, the IC keeps its VFM mode. As a result, frequency might be decreased, and oscillation waveform might be unstable. These phenomena are the typical characteristics of the IC with PWM/VFM alternative circuit. The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values.
I How to set the delay time of protection circuit
The equation describes how to calculate the delay time of protection circuit from the value of an external capacitor C4. 6 TDLY=C4x10 sec (In this equation, 1000pFC41F Without the external capacitor, a certain delay time exists, therefore, if the external capacitor is less than 1000pF, the error will increase. Further, if the external capacitor value is beyond 1F, the time required to discharge the C4 will be long, and this may cause the miss-operation. For example, if the protection circuit may work and released, soon after that the protection may work. In that case, C4 has not discharged completely yet, therefore, the delay time may be shorter than expected.
L
R1
C1 VIN CE C2 EXT
PM OS
VOUT DLY C4 SD
C3 LOAD
GND
CE CONTROL
12345
Rev. 1.11 -6-
I OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams: L i2 CL ton T=1/fosc toff i1 IOUT ILmin VOUT topen VIN Lx Tr SD ILmax
Step 1: Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of LX Tr. Step 2: When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3: IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off, provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is from this ILmin (>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. G Discontinuous Conduction Mode and Continuous Conduction Mode The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the same as those when Lx Tr. turns on and when it turns off. The difference between ILmax and ILmin, which is represented by I; I = ILmax - ILmin = VOUT x topen / L = (VIN-VOUT)xton/LEquation 1 Where, T=1/fosc=ton+toff duty (%)=ton/Tx100=tonx fosc x 100 topen toff In Equation 1, VOUTxtopen/L and (VIN-VOUT)xton/L are respectively shown the change of the current at ON, and the change of the current at OFF. When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case, the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period of toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode. In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc, tonc=TxVOUT/VIN Equation 2 When tonI OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When Lx Tr. is "ON": (Wherein, Ripple Current P-P value is described as IRP, ON resistance of LX Tr. is described as Rp the
12345
Rev. 1.11 -7-
direct current of the inductor is described as RL.) VIN=VOUT+(Rp+RL)xIOUT+LxIRP/ton Equation 3 When Lx Tr. is "OFF": LxIRP/toff = VF+VOUT+RLxIOUT Equation 4 Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON, DON=(VOUT+VF+RLxIOUT)/(VIN+VF-RpxIOUT)Equation 5 Ripple Current is as follows; IRP=(VIN-VOUT-RpxIOUT-RLxIOUT)xDON/f/L ...Equation 6 Wherein, peak current that flows through L, Lx Tr., and SD is as follows; ILmax=IOUT+IRP/2...Equation 7 Consider ILmax, condition of input and output and select external components. #The above explanation is directed to the calculation in an ideal case in continuous mode.
I External Components
1. Inductor Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic saturation occurs and make transform efficiency worse. When the load current is definite, the smaller value of L, the larger the ripple current. Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa. 2. Diode Use a diode with low VF (Schottky type is recommended.) and high switching speed. Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax. 3. Capacitors As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) and a capacity of at least 10F for stable operation. COUT can reduce ripple of Output Voltage, therefore 47F or more value of tantalum type capacitor is recommended. 4. Lx Transistor Pch Power MOSFET is required for this IC. Its breakdown voltage between gate and source should be a few V higher than Input Voltage. In the case of Input Voltage is low, to turn on MOSFET completely, to use a MOSFET with low threshold voltage is effective. If a large load current is necessary for your application and important, choose a MOSFET with low ON resistance for good efficiency. If a small load current is mainly necessary for your application, choose a MOSFET with low gate capacity for good efficiency. Maximum continuous drain current of MOSFET should be larger than peak current, ILmax.
12345
Rev. 1.11 -8-
I TIMING CHART
Case 1. Set VOUT Voltage >2.1V (Set VOUT Voltage>UVLO Voltage)
VOUT Set Output Voltage VIN Input Voltage Rising Time VOUT Set Output Voltage CE Protection Circuit Delay Time VOUT Set Output Voltage EXT CE Reset Protection Circuit Delay Time UVLO Voltage UVLO Reset
VOUT Set Output Voltage VOUT Stable Operation
Latch Protection
Latch Protection Stable Opera
Stable Operation
Soft Start
Soft Start
Soft Start
The timing chart shown above describes the changing process of input voltage rising, stable operating, operating with large current, reset with CE pin, stable operating, input voltage falling, input voltage recovering, and stable operating. First, until when the input voltage (VIN) reaches the set output voltage, the circuit inside keeps the condition of pre-standby. Second, after VIN becomes beyond the set output voltage, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable. If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during the delay time of protection circuit. (The current value depends on the circuit.) After the delay time passes, the latch protection works, or EXT signal will be "H", then output will turn off. To release the latch protection, input voltage should be equal or lower than UVLO level, or restart with CE (Once turn off the circuit with CE and turn it on again). In the timing charge above, release the latch function is realized with CE signal from "L" to "H". After removing the cause of large current and the reset with CE, softstart operation starts and after the soft-start time, the operation will be back to stable. If the VIN becomes lower than the set VOUT, that situation is same as large current condition, so protection circuit may be ready to work, therefore, after the delay time of protection circuit, EXT will be "H" and the output turns off. Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function. After that, if VIN rises, until when the VIN reaches the set output voltage, the circuit inside keeps the condition of pre-standby. Then after VIN becomes beyond the set output voltage, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable.
12345
Rev. 1.11 -9-
Case 2. Set VOUT Voltage 2.0V (Set VOUT Voltage < UVLO Voltage)
UVLO Voltage VIN VOUT Set Output Voltage Input Voltage Rising Time UVLO Voltage CE Protection Circuit Delay Time Reset with CE UVLO Reset
UVLO Voltage EXT
VOUT Set Output Voltage VOUT
Latch Protection
Stable Operation
Stable Operation
Stable Operatio
Soft Start
Soft Start
Soft Start
The timing chart shown above describes the changing process of input voltage rising, stable operating, operating with large current, reset with CE pin, stable operating, input voltage falling, input voltage recovering, and stable operating. First, until when the input voltage (VIN) reaches the UVLO voltage, the circuit inside keeps the condition of pre-standby. Second, after VIN becomes beyond the UVLO voltage, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable. If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during the delay time of protection circuit. (The current value depends on the circuit.) After the delay time passes, the latch protection works, or EXT signal will be "H", then output will turn off. To release the latch protection, input voltage should be equal or lower than UVLO level, or restart with CE (Once turn off the circuit with CE and turn it on again). In the timing charge above, release the latch function is realized with CE signal from "L" to "H". After removing the cause of large current and the reset with CE, softstart operation starts and after the soft-start time, the operation will be back to stable. Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function. After that, if VIN rises, until when the VIN reaches UVLO voltage, the circuit inside keeps the condition of prestandby. Then after VIN becomes beyond the UVLO voltage, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable.
12345
Rev. 1.11 - 10 -
A) Output Voltage, Oscillator Frequency, CE"H" Input Voltage, CE"L" Input Voltage, Soft-start time
L1 PMOS
I TEST CIRCUITS
EXT
Oscilloscope D1 + C1
VIN DLY CE
+ C2
GND VOUT
V
-
B) Supply Current1
EXT GND VOUT V IN DLY CE
C) Standby Current
EXT VIN DLY CE
A
A
GND VOUT
D) EXT "H" Output Current
E) EXT "L" Output Current
EXT VIN DLY CE GND VOUT
EXT
VIN DLY CE
A
A
GND VO UT
F) DLY Switch Current
EXT GND VOUT VIN DLY CE
A
12345
Rev. 1.11 - 11 -
G) CE "H" Input Current, CE "L" Input Current
H) Output Delay Time for Protection Circuit
EXT VIN DLY CE C3 + C2
EXT GND VOUT
VIN
DLY
Oscilloscope
GND VOUT
CE
A
PMOS: HAT1044M (Hitachi) L: CD104-270MC (Sumida, 27H) SD1: RB491D (Rohm) C1: 47F (Tantalum Type) C2: 47F (Tantalum Type) C3: 20nF(Ceramic Type)
I TYPICAL CHARACTERISTICS
Almost all the characteristics of R1225N series are same as R1224N Series. Except the following characteristics, refer to the datasheet of R1224N Series. 1) Efficiency vs. Output Current
R1225N182A(Vin=3.3V) CDRH127-10uH 100% 90% 80% 70% 100% 90% 80% 70% R1225N182A(Vin=5.0V) CDRH127-10uH
Efficiency
50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Efficiency
60%
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout (mA)
R1225N182B(Vin=3.3V) CDRH127-10uH 100% 90% 80% 70%
Output Current Iout (mA)
R1225N182B(Vin=5.0V) 100% 90% 80% 70% Efficiency 60% 50% 40% 30% 20% 10% 0% 0.1 1
CDRH127-10uH
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout (mA) 10000
10 100 1000 Output Current Iout (mA)
10000
12345
Rev. 1.11 - 12 -
R1225N182C(Vin=3.3V) 100% 90% 80% 70% Efficiency 50% 40% 30% 20% 10% 0% 0.1 1 60%
CDRH127-10uH 100% 90% 80% 70% Efficiency 60% 50% 40% 30% 20% 10% 0%
R1225N182C(Vin=5.0V)
CDRH127-10uH
10 100 1000 Output Current Iout (mA)
10000
0.1
1
10 100 1000 Output Current Iout (mA)
10000
R1225N182C(Vin=12V) CDRH127-10uH 100% 90% 80% 70%
R1225N182D(Vin=3.3V) 100% 90% 80% 70% Efficiency 60% 50% 40% 30% 20% 10% 0%
CDRH127-10uH
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
0.1
1
Output Current Iout (mA)
10 100 1000 Output Current Iout (mA)
10000
R1225N182D(Vin=5.0V) CDRH127-10uH 90% 80% 70% 60%
R1225N182D(Vin=12V) CDRH127-10uH 100% 90% 80% 70% Efficiency 60% 50% 40% 30% 20% 10% 0%
Efficiency
50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
0.1
1
Output Current Iout (mA)
10 100 1000 Output Current Iout (mA)
10000
12345
Rev. 1.11 - 13 -
R1225N182J(Vin=3.3V) CDRH127-27uH 100% 90% 80% 70%
R1225N182J(Vin=5.0V) CDRH127-27uH 100% 90% 80% 70% Efficiency 60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout (mA) 10000
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout (mA)
R1225N182K(Vin=3.3V) CDRH127-27uH 100% 90% 80% 70% 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0.1 1 10 100 1000 10000 0% 0.1
R1225N182K(Vin=5.0V) CDRH127-27uH
Efficiency
50% 40% 30% 20% 10% 0%
Efficiency
60%
Output Current Iout(mA)
R1225N182K(Vin=12V) CDRH127-27uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
1
Output Current Iout(mA)
10
100
1000
10000
R1225N332A(Vin=4.8V) CDRH127-10uH IRF7406
Efficiency
50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Efficiency
60%
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout(mA) 10000
Output Current Iout(mA)
12345
Rev. 1.11 - 14 -
R1225N332A(Vin=7.0V) CDRH127-10uH IRF7406 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout(mA) 10000 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0.1
R1225N332B(Vin=4.8V) CDRH127-10uH IRF7406
Efficiency
Efficiency
1
10 100 1000 Output Current Iout(mA)
10000
R1225N332B(Vin=7.0V) CDRH127-10uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
R1225N332C(Vin=4.8V) CDRH127-10uH IRF7406
Efficiency
0.1 1 10 100 1000 10000
Efficiency
60% 50% 40% 30% 20% 10% 0%
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
Output Current Iout(mA)
R1225N332C(Vin=12V) CDRH127-10uH IRF7406 100% 90% 80% 70%
R1225N332C(Vin=15V) CDRH127-10uH IRF7406 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout(mA) 10000
Efficiency
50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
Efficiency
60%
12345
Rev. 1.11 - 15 -
R1225N332D(Vin=4.8V) CDRH127-10uH IRF7406 100% 90% 80% 70% Efficiency 60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout(mA) 10000
R1225N332D(Vin=12V) CDRH127-10uH IRF7406 100% 90% 80% 70%
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
R1225N332D(Vin=15V) CDRH127-10uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
R1225N332K(Vin=4.8V) CDRH127-27uH IRF7406
Efficiency
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
R1225N332K(Vin=12V) CDRH127-27uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
Output Current Iout(mA)
R1225N332K(Vin=15V) CDRH127-27uH IRF7406
Efficiency
0.1 1 10 100 1000 10000
Efficiency
60% 50% 40% 30% 20% 10% 0%
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
Output Current Iout(mA)
12345
Rev. 1.11 - 16 -
R1225N502A(Vin=6.5V) CDRH127-10uH IRF7406 100% 90% 80% 70% Efficiency 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout(mA) 10000 Efficiency 60% 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0.1
R1225N502A(Vin=10V) CDRH127-10uH IRF7406
1
10 100 1000 Output Current Iout(mA)
10000
R1225N502B(Vin=6.5V) CDRH127-10uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
R1225N502B(Vin=10V) CDRH127-10uH IRF7406
Efficiency
0.1 1 10 100 1000 10000
Efficiency
60% 50% 40% 30% 20% 10% 0%
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
Output Current Iout(mA)
R1225N502C(Vin=6.5V) CDRH127-10uH IRF7406
R1225N502C(Vin=12V) CDRH127-10uH IRF7406 100% 90% 80% 70%
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 Output Current Iout(mA) 10000
Efficiency
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
12345
Rev. 1.11 - 17 -
R1225N502C(Vin=15V) CDRH127-10uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
R1225N502D(Vin=6.5V) CDRH127-10uH IRF7406
Efficiency
0.1 1 10 100 1000 Output Current Iout(mA) 10000
Efficiency
60% 50% 40% 30% 20% 10% 0%
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
R1225N502D(Vin=12V) CDRH127-10uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
R1225N502D(Vin=15V) CDRH127-10uH IRF7406
Efficiency
Efficiency
0.1 1 10 100 1000 10000
60% 50% 40% 30% 20% 10% 0%
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
R1225N502J(Vin=6.5V) CDRH127-27uH IRF7406 100% 90% 80% 70%
Output Current Iout(mA)
R1225N502J(Vin=10V) CDRH127-27uH IRF7406 100% 90% 80% 70%
Efficiency
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
Output Current Iout(mA)
12345
Rev. 1.11 - 18 -
R1225N502K(Vin=6.5V) CDRH127-27uH IRF7406 100% 90% 80% 70% 100% 90% 80% 70%
R1225N502K(Vin=12V) CDRH127-27uH IRF7406
Efficiency
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
Output Current Iout(mA)
R1225N502K(Vin=15V) CDRH127-27uH IRF7406 100% 90% 80% 70%
Efficiency
60% 50% 40% 30% 20% 10% 0% 0.1 1 10 100 1000 10000
Output Current Iout(mA)
2) Ripple Voltage vs. Output Current
R1225N182A L=10uH 70 Vin3.3V Vin5V R1225N182B L=10uH
70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current Iout(mA) 10000
60 50 40 30 20 10 0 0.1 1
Vin3.3V Vin5V
10
100
1000
10000
Output Current Iout(mA)
12345
Rev. 1.11 - 19 -
R1225N182C 70
L=10uH
R1225N182D
L=10uH
70 Ripple Voltage Vrpp(mV)
Vin3.3V Vin5V Vin12V
Ripple Voltage Vrpp (mV)
60 50 40 30 20 10 0 0.1 1
60 50 40 30 20 10 0 0.1 1
Vin3.3V Vin5V Vin12V
Output Current Iout (mA)
R1225N182J L=27uH
10
100
1000
10000
10 100 1000 Output Current Iout(mA)
L=27uH
10000
R1225N182K
70 Ripple Voltage Vrpp(mV)
Vin3.3V Vin5V
70 Ripple Voltage Vrpp(mV) 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current Iout(mA)
R1225N332A L=10uH Vin3.3V Vin5V Vin12V
60 50 40 30 20 10 0
10000
0.1
1
10 100 1000 Output Current Iout(mA)
R1225N332B L=10uH
10000
70
70 Ripple Voltage Vrpp(mV)
Vin4.8V Vin7V
Ripple Voltage Vrpp(mV)
60 50 40 30 20 10 0 0.1 1
60 50 40 30 20 10 0 0.1 1
Vin4.8V Vin7V
10 100 1000 Output Current Iout(mA)
10000
10 100 1000 Output Current Iout(mA)
10000
12345
Rev. 1.11 - 20 -
R1225N332C
L=10uH
R1225N332D
L=10uH
70
Vin4.8V Vin12V Vin15V
70 Ripple Voltage Vrpp(mV) 60 50 40 30 20 10 0
0.1 1 10 100 1000 Output Current Iout(mA)
R1225N332J L=27uH 70 Ripple Voltage Vrpp(mV) Vin4.8V Vin7V 60 50 40 30 20 10 0 Vin4.8V Vin12V Vin15V Vin4.8V Vin12V Vin15V
Ripple Voltage Vrpp(mV)
60 50 40 30 20 10 0
10000
0.1
1
10 100 1000 Output Current Iout(mA)
R1225N332K L=27uH
10000
70 Ripple Voltage Vrpp(mV) 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current Iout(mA)
L=10uH
10000
0.1
1
10
100
1000
10000
Output Current Iout(mA) R1225N502B 70 L=10uH
R1225N502A
70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current Iout(mA) 10000
Vin6.5V Vin10V
60 50 40 30 20 10 0 0.1 1
Vin6.5V Vin10V
10
100
1000
10000
Output Current Iout(mA)
12345
Rev. 1.11 - 21 -
R1225N502C 70
L=10uH
R1225N502D
L=10uH
70 Ripple Voltage Vrpp(mV)
Vin6.5V Vin12V Vin15V
Ripple Voltage Vrpp(mV)
60 50 40 30 20 10 0 0.1 1
60 50 40 30 20 10 0 0.1 1
Vin6.5V Vin12V Vin15V
10
100
1000
10000
Output Current Iout(mA)
R1225N502J L=27uH
10 100 1000 Output Current Iout(mA)
L=27uH
10000
R1225N502K
70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 60 50 40 30 20 10 0 0.1 1 10 100 1000 Output Current Iout(mA) 10000
Vin6.5V Vin10V
70 60 50 40 30 20 10 0 0.1 1 10 100 1000 10000 Output Current Iout(mA)
Vin6.5V Vin12V Vin15V
3) Input Voltage vs. Output Voltage
R1225N182A L=10uH R1225N182B L=10uH
2.00 Output Voltage Vout(V) 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 0 5 10 15 Input Voltage Vin(V) 20
1mA 500mA
2.00 Output Voltage Vout(V) 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 0 5 10 15 Input Voltage Vin(V) 20
1mA 500mA
12345
Rev. 1.11 - 22 -
R1225N182C
L=10uH
R1225N182D
L=10uH
2.00 Output Voltage Vout(V) Output Voltage Vout(V) 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 0 5 10 15 Input Voltage Vin(V)
L=27uH -1mA -500mA
2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 20 0 5 10 15 Input Voltage Vin(V)
L=27uH -1mA -500mA
20
R1225N182J
R1225N182K
2.00
2.00 Output Voltage Vout(V) 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60
0 5 10 15 Input Voltage Vin(V) 20
1mA 500mA
Output Voltage Vout(V)
1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60
1mA 500mA
0
5
10 15 Input Voltage Vin(V)
L=10uH
20
R1225N332A L=10uH
R1225N332B
3.40 3.38 3.36 3.34 3.32 3.30 3.28 3.26 3.24 3.22 3.20 0 5
3.40 3.38 3.36 3.34 3.32 3.30 3.28 3.26 3.24 3.22 3.20 0 Output Voltage Vout(V)
Output Voltage Vout(V)
1mA 500mA
1mA 500mA
10 15 Input Voltage Vin(V)
20
5
10 15 Input Voltage Vin(V)
20
12345
Rev. 1.11 - 23 -
R1225N332C
L=10uH
R1225N332D
L=10uH
Output Voltage Vout(V)
Output Voltage Vout(V)
3.40 3.38 3.36 3.34 3.32 3.30 3.28 3.26 3.24 3.22 3.20 0 5
3.40 3.38 3.36 3.34 3.32 3.30 3.28 3.26 3.24 3.22 3.20
-1mA -500mA
-1mA -500mA
10 15 Input Voltage Vin(V)
L=27uH
20
0
5
10 15 Input Voltage Vin(V)
L=27uH
20
R1225N332J
R1225N332K
3.40 3.38 3.36 3.34 3.32 3.30 3.28 3.26 3.24 3.22 3.20 0 5
Output Voltage Vout(V)
Output Voltage Vout(V)
3.40 3.38 3.36 3.34 3.32 3.30 3.28 3.26 3.24 3.22 3.20 0 5
1mA 500mA
1mA 500mA
10 15 Input Voltage Vin(V)
20
10 15 Input Voltage Vin(V)
20
4) Output Voltage vs. Output Current
R1225N182A L=10uH R1225N182B L=10uH
1.850 Output Voltage Vout(V)
Output Voltage Vout(V)
1.850 1.830 1.810 1.790 1.770 1.750
Vin3.3V Vin5V
1.830 1.810 1.790
Vin3.3V
1.770 1.750 0.1 1
Vin5V
10 100 1000 Output Current Iout(mA)
10000
0.1
1
10
100
1000
10000
Output Current Iout(mA)
12345
Rev. 1.11 - 24 -
R1225N182C 1.850
L=10uH
R1225N182D
L=10uH
1.850 Output Voltage Vout(V) 1.830 1.810 1.790
Vin3.3V
Output Voltage Vout (V)
1.830 1.810 1.790 Vin3.3V 1.770 1.750 0.1 1 10 100 1000 10000 Vin5V Vin12V
1.770 1.750 0.1 1
Vin5V Vin12V
Output Current Iout (mA)
R1225N182J L=27uH
10 100 1000 Output Current Iout(mA)
L=27uH
10000
R1225N182K
1.850 Output Voltage Vout(V) Output Voltage Vout(V) 1.830 1.810 1.790
Vin3.3V
1.850 1.830 1.810 1.790 1.770 1.750 0.1 1 10 100 1000 Output Current Iout(mA)
L=10uH Vin3.3 V Vin5V Vin12V
1.770
Vin5V
1.750 10000
0.1
1
10
100
1000
10000
Output Current Iout(mA)
R1225N332B L=10uH
R1225N332A
3.40 3.38 3.36 3.34 3.32 3.30 3.28 3.26 3.24 3.22 3.20 0.1 1
Vin4.8V Vin7V
3.400 3.380 3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200 0.1 1
Output Voltage Vout(V)
Output Voltage Vout(V)
Vin4.8V Vin7V
10
100
1000
10000
Output Current Iout(mA)
10 100 1000 Output Current Iout(mA)
10000
12345
Rev. 1.11 - 25 -
R1225N332C
L=10uH 3.400 3.380
R1225N332D
L=10uH
3.400 3.380 3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200 0.1 1
Output Voltage Vout(V)
Output Voltage Vout(V)
3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200 Vin4.8V Vin12V Vin15V 0.1 1 10 100 1000 10000
Vin4.8V Vin12V Vin15V
10 100 1000 Output Current Iout(mA)
L=27uH
10000
Output Current Iout(mA)
R1225N332K L=27uH
R1225N332J
3.400 3.380 3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200 0.1 1
Vin4.8V Vin7V
3.400 3.380 3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200 0.1 1
Output Voltage Vout(V)
Output Voltage Vout(V)
Vin4.8V Vin12V Vin15V
10 100 1000 Output Current Iout(mA)
L=10uH
10000
10 100 1000 Output Current Iout(mA)
L=10uH
10000
R1225N502A
R1225N502B
5.100 5.080 5.060 5.040 5.020 5.000 4.980 4.960 4.940 4.920 4.900 0.1 1
Vin10V
Output Voltage Vout(V)
Output Voltage Vout(V)
Vin6.5V
5.100 5.080 5.060 5.040 5.020 5.000 4.980 4.960 4.940 4.920 4.900 0.1 1
Vin6.5V Vin10V
10 100 1000 Output Current Iout(mA)
10000
10 100 1000 Output Current Iout(mA)
10000
12345
Rev. 1.11 - 26 -
R1225N502C
L=10uH
R1225N502D
L=10uH
Output Voltage Vout(V)
Output Voltage Vout(V)
5.100 5.080 5.060 5.040 5.020 5.000 4.980 4.960 4.940 4.920 4.900 0.1 1
5.100
Vin6.5V Vin12V Vin15V
5.080 5.060 5.040 5.020 5.000 4.980 4.960 4.940 4.920 4.900
Vin6.5V Vin12V Vin15V
10 100 1000 Output Current Iout(mA)
L=27uH
10000
0.1
1
10 100 1000 Output Current Iout(mA)
L=27uH
10000
R1225N502J
R1225N502K
5.100 5.080 5.060 5.040 5.020 5.000 4.980 4.960 4.940 4.920 4.900 0.1 1
Vin6.5V Vin10V
5.100 5.080 5.060 5.040 5.020 5.000 4.980 4.960 4.940 4.920 4.900 0.1 1
Output Voltage Vout(V)
Output Voltage Vout(V)
Vin6.5V Vin12V Vin15V
10 100 1000 Output Current Iout(mA)
10000
10 100 1000 Output Current Iout(mA)
10000
5) Load Transient Response
R1225N332A 3.50 3.40 Output Voltage Vout(V) 3.30 3.20 3.10 3.00 2.90 2.80 2.70 2.60 L=10uH Vin=4.8V 2000 1800 1400 1200 1000 800 600 400 200 Output Voltage Vout(V) 1600 Output Current Iout(mA) 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 -0.05 0.00 0.05 Time(sec) 0.10 R1225N332A L=10uH Vin=4.8V 2000 1800 1400 1200 1000 800 600 400 200 0 0.15 Output Current Iout(mA) 1600
0 2.50 -0.00 -0.00 0.000 0.000 0.000 0.000 0.000 02 01 0 1 2 3 4 Time(sec)
12345
Rev. 1.11 - 27 -
R1225N332A 3.50 3.40 Output Voltage Vout(V) 3.30 3.20 3.10 3.00 2.90 2.80 2.70 2.60
L=10uH Vin=7V 2000 1800 Output Current Iout(mA) 1600 1400 1200 1000 800 600 400 200 Output Voltage Vout(V) 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 -0.05
R1225N332A
L=10uH Vin=7V 2000 1800 Output Current Iout(mA) Output Current Iout(mA) Output Current Iout(mA) 1600 1400 1200 1000 800 600 400 200
2.50 0 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 2 1 0 1 2 3 4 Time(sec) R1225N332B 3.50 3.40 Output Voltage Vout(V) 3.30 3.20 3.10 3.00 2.90 2.80 2.70 2.60 L=10uH Vin=4.8V 2000 1800 Output Current Iout(mA) 1400 1200 1000 800 600 400 200 Output Voltage Vout(V) 1600
0.00
0.05 Time(sec)
0.10
0 0.15
R1225N332B 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 -0.04 -0.02 0
L=10uH Vin=4.8V 2000 1800 1600 1400 1200 1000 800 600 400 200 0.02 0.04 Time(sec) 0.06 0 0.08
0 2.50 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 2 1 0 1 2 3 4 Time(sec) R1225N332B 3.50 3.40 Output Voltage Vout(V) 3.30 3.20 3.10 3.00 2.90 2.80 2.70 2.60 L=10uH Vin=7v 2000 1800 Output Current Iout(mA) 1600 1400 1200 1000 800 600 400 200 Output Voltage Vout(V)
R1225N332B 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 -0.04 -0.02 0
L=10uH Vin=7V 2000 1800 1600 1400 1200 1000 800 600 400 200
0 2.50 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 2 1 0 1 2 3 4 Time(sec)
0.02 0.04 Time(sec)
0.06
0 0.08
12345
Rev. 1.11 - 28 -
R1225N332J 3.50 3.40 Output Voltage Vout(V) 3.30 3.20 3.10 3.00 2.90 2.80 2.70 2.60
L=27uH Vin=4.8V 2000 1800 Output Current Iout(mA) 1600 1400 1200 1000 800 600 400 200 Output Voltage Vout(V) 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05
R1225N332J
L=27uH Vin=4.8V 2000 1800 Output Current Iout(mA) 1600 1400 1200 1000 800 600 400 200
0 2.50 -0.00 -0.00 0.000 0.000 0.000 0.000 0.000 02 01 0 1 2 3 4 Time(sec)
3.00 -0.04 -0.02
0
0.02 0.04 Time(sec)
0.06
0 0.08
12345
Rev. 1.11 - 29 -


▲Up To Search▲   

 
Price & Availability of R1225N122J-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X